\qquad

C.U.SHAH UNIVERSITY

 Summer Examination-2016
Subject Name : Mathematics-I

Subject Code : 4SC01MTC1
Semester : 1
Date :25/04/2016
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Attempt the following questions:

a) Find the eigen values of the matrix $\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 2\end{array}\right]$.
b) Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$.
c) Find the center and radius of the sphere $x^{2}+y^{2}+z^{2}-4 x-2 y-6 z-11=0$.
d) Check whether the following differential equation is exact or not:
$\left(1+2 x y \cos x^{2}-2 x y\right) d x+\left(\sin x^{2}-x^{2}\right) d y=0$.
e) Express the equation $x^{2}+y^{2}=1$ into the polar form.
f) Write down the series expansion of e^{x} in powers of x.
g) State Roll's mean value theorem.

Attempt any four questions from Q-2 to Q-8
Q-2

Q-3 Attempt all questions
a) Test for consistency and solve
$5 x+3 y+7 z=4 ; 3 x+26 y+2 z=9 ; 7 x+2 y+10 z=5$.
b) State and prove Cauchy mean value theorem.

Q-4 Attempt all questions
a) State standard form of a linear equation of the first order and solve
$\frac{d y}{d x}-\frac{y}{x+1}=e^{3 x}(x+1)$.
b) Apply Gauss elimination method to solve the equations

Page 1 || 2

a) State Cayley-Hamilton theorem and verify it for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$. Also find A^{-1}.
b) State and prove Leibnitz's theorem.

$$
\begin{equation*}
x+4 y-z=-5 ; x+y-6 z=-12 ; 3 x-y-z=4 \tag{14}
\end{equation*}
$$

Q-5

Q-6

Q-7

Q-8

Attempt all questions

a) Expand $\log x$ in powers of $(x-1)$ and hence evaluate $\log 1.1$ correct to four decimal places.
b) Find the eigen values and eigen vectors of the matrix $\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$.

Attempt all questions

a) If $y=e^{a \sin ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$.

Hence find the value of y_{n} when $x=0$.
b) Solve the following system of equations using Cramer's rule:
$3 x+y+2 z=3 ; 2 x-3 y-z=-3 ; \quad x+2 y+z=4$.
a)

Attempt all questions
Define: rank of the matrix and find the rank of matrix $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1\end{array}\right]$.
b) Define: Hermitian matrix. If $A=\left[\begin{array}{ccc}2+i & 3 & -1+3 i \\ -5 & i & 4-2 i\end{array}\right]$, show that $A A^{*}$ is a Hermitian matrix, where A^{*} is conjugate transpose of A.

Attempt all questions
a) Solve: $\left(x^{2}-y^{2}\right) d x-x y d y=0$.
b)

Reduce the matrix $A=\left[\begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right]$ to the diagonal form.

